one-stage model (post vaccination data,2.2min)
aa1=lglasso(data=postdata[,-c(3:5)],lambda = 0.005670864,random = TRUE,trace = T)
## [1] "alpha estimate: 1"
## [1] "iteration 1 precision difference: 12.628 /correlation alpha difference: 14.051"
## [1] "alpha estimate: 15.051201861239"
## [1] "iteration 2 precision difference: 2.213 /correlation alpha difference: 1.777"
## [1] "alpha estimate: 13.2739103818436"
## [1] "iteration 3 precision difference: 1.419 /correlation alpha difference: 3.437"
## [1] "alpha estimate: 9.83729504575252"
## [1] "iteration 4 precision difference: 0.87 /correlation alpha difference: 2.511"
## [1] "alpha estimate: 7.3266095328824"
## [1] "iteration 5 precision difference: 0.657 /correlation alpha difference: 1.484"
## [1] "alpha estimate: 5.84290709868853"
## [1] "iteration 6 precision difference: 0.421 /correlation alpha difference: 0.828"
## [1] "alpha estimate: 5.01481463104218"
## [1] "iteration 7 precision difference: 0.286 /correlation alpha difference: 0.624"
## [1] "alpha estimate: 4.39052127059415"
## [1] "iteration 8 precision difference: 0.191 /correlation alpha difference: 0.225"
## [1] "alpha estimate: 4.16586544143655"
## [1] "iteration 9 precision difference: 0.128 /correlation alpha difference: 0.274"
## [1] "alpha estimate: 3.89216432967499"
## [1] "iteration 10 precision difference: 0.104 /correlation alpha difference: 0.035"
## [1] "alpha estimate: 3.85766351841488"
## [1] "iteration 11 precision difference: 0.115 /correlation alpha difference: 0.037"
## [1] "alpha estimate: 3.82059673885408"
## [1] "iteration 12 precision difference: 0.081 /correlation alpha difference: 0.017"
aa1$wi[[1]][1:10,1:10]
## FIM_IgG4 TT_IgG3 IPV1_IgG3 ACT_FcgR2a TT_ADNP FHA_IgG
## FIM_IgG4 6.2313605 0.0000000 0.12383455 0.0000000 0.00000000 0.0000000
## TT_IgG3 0.0000000 12.3594992 0.00000000 0.7087086 0.00000000 0.0000000
## IPV1_IgG3 0.1238568 0.0000000 9.19658539 0.1781837 0.00000000 0.0000000
## ACT_FcgR2a 0.0000000 0.7086643 0.17824696 18.3837752 -0.24155236 -0.6798852
## TT_ADNP 0.0000000 0.0000000 0.00000000 -0.2415638 10.86840062 0.0000000
## FHA_IgG 0.0000000 0.0000000 0.00000000 -0.6799054 0.00000000 13.2755022
## PRN_FcgR2a 0.0000000 -0.0613783 0.00000000 0.0000000 0.00000000 1.2722874
## IPV3_ADCD 0.0000000 0.0000000 0.00000000 0.4096089 0.00000000 0.0000000
## IPV1_IgG4 0.0000000 0.0000000 -2.87103550 0.0000000 0.00000000 0.0000000
## PT_FcgR2a 0.0000000 0.0000000 -0.06009077 0.0000000 0.07916382 0.7203898
## PRN_FcgR2a IPV3_ADCD IPV1_IgG4 PT_FcgR2a
## FIM_IgG4 0.00000000 0.0000000 0.000000 0.00000000
## TT_IgG3 -0.06144336 0.0000000 0.000000 0.00000000
## IPV1_IgG3 0.00000000 0.0000000 -2.871033 -0.06008371
## ACT_FcgR2a 0.00000000 0.4098423 0.000000 0.00000000
## TT_ADNP 0.00000000 0.0000000 0.000000 0.07914308
## FHA_IgG 1.27228015 0.0000000 0.000000 0.72036271
## PRN_FcgR2a 16.57955361 0.0000000 0.000000 -0.56849713
## IPV3_ADCD 0.00000000 34.7492731 0.000000 0.00000000
## IPV1_IgG4 0.00000000 0.0000000 13.139356 0.00000000
## PT_FcgR2a -0.56845599 0.0000000 0.000000 16.66298634
aa1$tau
## [,1]
## [1,] 0.32294065
## [2,] 0.41120393
## [3,] 0.23581741
## [4,] 0.32997446
## [5,] 0.64689868
## [6,] 0.17830071
## [7,] 0.19952555
## [8,] 0.21376751
## [9,] 0.21719283
## [10,] 0.13931214
## [11,] 0.04899138
## [12,] 0.08500584
## [13,] 0.04157536
## [14,] 0.17076139
## [15,] 0.05504076
## [16,] 0.40002711
## [17,] 0.22850727
## [18,] 0.18847646
## [19,] 0.15308519
## [20,] 0.06095524
## [21,] 0.18227891
## [22,] 0.32778946
## [23,] 0.11335923
## [24,] 0.05934030
## [25,] 0.20813052
## [26,] 0.05145638
## [27,] 0.18887001
## [28,] 0.08969840
## [29,] 0.09246103
## [30,] 0.22112939
## [31,] 0.20523908
## [32,] 0.13499815
## [33,] 0.13592933
## [34,] 0.19490843
## [35,] 0.37457548
## [36,] 0.13532722
## [37,] 0.34413341
## [38,] 0.23893279
## [39,] 0.69281153
## [40,] 0.34278997
## [41,] 0.18003713
## [42,] 0.57430218
## [43,] 0.22851937
## [44,] 0.38054626
## [45,] 0.19162455
## [46,] 0.10254076
## [47,] 0.66241437
## [48,] 0.34238288
## [49,] 0.22628557
## [50,] 0.19313336
## [51,] 0.16523150
## [52,] 0.12075913
## [53,] 0.09657972
## [54,] 0.13320785
## [55,] 0.32421003
## [56,] 0.05934850
## [57,] 0.10813437
## [58,] 0.14013748
## [59,] 0.91495702
## [60,] 0.07461182
## [61,] 0.27615683
## [62,] 0.41506812
## [63,] 0.07412226
## [64,] 0.12114411
## [65,] 0.17176926
## [66,] 0.13458028
## [67,] 0.55343538
## [68,] 0.06606451
## [69,] 0.15389460
## [70,] 0.07936813
## [71,] 0.07549770
## [72,] 0.15048421
## [73,] 0.09889201
## [74,] 0.12012091
## [75,] 0.09865107
## [76,] 0.14850582
## [77,] 0.18770132
## [78,] 0.05540880
## [79,] 0.13221031
## [80,] 0.10500811
## [81,] 0.60032659
## [82,] 0.08593307
## [83,] 0.22564865
## [84,] 0.22615725
## [85,] 0.21020616
## [86,] 0.18679712
## [87,] 0.18151487
## [88,] 0.10694443
## [89,] 0.92305171
## [90,] 0.10161552
## [91,] 0.39811856
## [92,] 0.42707533
## [93,] 0.05764923
## [94,] 0.08426755
## [95,] 0.25609133
## [96,] 0.14075785
## [97,] 0.28540195
## [98,] 0.32161414
## [99,] 0.22506176
## [100,] 0.12778905
## [101,] 0.10832909
## [102,] 0.43407772
## [103,] 0.08614450
## [104,] 0.22206752
## [105,] 0.58514487
## [106,] 0.22916045
## [107,] 0.70781326
## [108,] 0.86628184
## [109,] 0.47101994
## [110,] 1.02506957
## [111,] 0.18116380
## [112,] 0.17780393
## [113,] 0.06412562
## [114,] 0.14685675
## [115,] 0.82447727
## [116,] 0.29534965
## [117,] 0.13779985
## [118,] 0.18393832
## [119,] 0.15921334
## [120,] 0.33836826
## [121,] 0.07807826
## [122,] 0.62680257
## [123,] 0.32252971
## [124,] 0.16861262
## [125,] 0.10675034
## [126,] 0.12191496
## [127,] 0.11393661
## [128,] 0.10520094
## [129,] 0.07611548
## [130,] 0.05005381
## [131,] 0.06985187
## [132,] 0.34367487
## [133,] 0.12370193
## [134,] 0.18846106
## [135,] 0.27623793
## [136,] 0.29266653
## [137,] 0.18518666
## [138,] 0.31354703
## [139,] 0.69504549
## [140,] 1.07473622
## [141,] 0.20042926
## [142,] 1.35263345
## [143,] 0.11679440
## [144,] 0.06638076
## [145,] 0.05676611
## [146,] 0.38301627
## [147,] 0.30680104
## [148,] 0.13285243
## [149,] 0.21384446
## [150,] 0.10161476
## [151,] 0.14308433
## [152,] 0.28568427
## [153,] 0.40412242
## [154,] 0.03529635
## [155,] 0.14313785
## [156,] 0.14313522
## [157,] 0.14911434
## [158,] 0.21891500
## [159,] 0.09704320
## [160,] 0.07356775
## [161,] 0.29222569
## [162,] 0.21069130
## [163,] 0.64200607
## [164,] 0.14232544
## [165,] 0.28788128
## [166,] 1.13912823
## [167,] 0.11323173
## [168,] 0.15397005
## [169,] 0.21469150
## [170,] 0.11078735
## [171,] 0.16166601
## [172,] 0.17014112
## [173,] 0.09649565
## [174,] 0.16427994
## [175,] 0.27466684
## [176,] 0.72409513
## [177,] 0.22002190
## [178,] 0.30299638
## [179,] 0.66322325
## [180,] 0.14382660
## [181,] 0.19242611
## [182,] 0.26753385
## [183,] 1.11841770
## [184,] 0.10397376
## [185,] 0.13322593
## [186,] 0.27463337
## [187,] 0.07317555
## [188,] 0.07356629
## [189,] 0.16860416
## [190,] 0.61450285
## [191,] 0.12420310
## [192,] 0.07805813
## [193,] 0.04722516
## [194,] 0.23484877
## [195,] 0.10257349
## [196,] 0.50091828
## [197,] 0.90365496
## [198,] 0.05810137
## [199,] 0.47930551
## [200,] 0.26078562
## [201,] 0.61406191
## [202,] 0.09001542
## [203,] 0.55458747
## [204,] 0.16106076
## [205,] 0.17158602
## [206,] 0.16868296
## [207,] 0.09974421
## [208,] 0.18311607
## [209,] 0.14001977
## [210,] 0.30283709
## [211,] 0.17680308
## [212,] 0.20464391
## [213,] 0.37833716
## [214,] 0.15509033
## [215,] 0.36250240
## [216,] 0.29507996
## [217,] 0.19318461
## [218,] 0.19962192
## [219,] 0.23572198
## [220,] 0.16705160
## [221,] 0.21109902
## [222,] 0.18556833
## [223,] 0.19687828
## [224,] 0.13106570
## [225,] 0.58281209
## [226,] 0.20599108
## [227,] 0.08550390
## [228,] 0.18437365
## [229,] 0.80114724
## [230,] 0.21559845
## [231,] 1.19336249
## [232,] 0.21646568
## [233,] 0.07219403
## [234,] 0.54908506
## [235,] 0.71829076
## [236,] 0.17227010
## [237,] 0.17751920
## [238,] 0.30339503
## [239,] 0.26517624
aa1$alpha
## [1] 3.803809
dd=unique(postdata[,c(1,3:5)])
boxplot(aa1$tau~dd$infant_arm)

summary(lm(aa1$tau~dd$infant_arm))
##
## Call:
## lm(formula = aa1$tau ~ dd$infant_arm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.25885 -0.12801 -0.07404 0.04245 1.13476
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.21787 0.02122 10.27 < 2e-16 ***
## dd$infant_armwP 0.08821 0.02970 2.97 0.00329 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2295 on 237 degrees of freedom
## Multiple R-squared: 0.03588, Adjusted R-squared: 0.03181
## F-statistic: 8.82 on 1 and 237 DF, p-value: 0.003287
boxplot(aa1$tau~dd$delivery_mode)

summary(lm(aa1$tau~dd$delivery_mode))
##
## Call:
## lm(formula = aa1$tau ~ dd$delivery_mode)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.23116 -0.14364 -0.07758 0.04372 1.08618
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.20106 0.06470 3.107 0.00212 **
## dd$delivery_modeVaginal Delivery 0.06539 0.06654 0.983 0.32671
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2333 on 237 degrees of freedom
## Multiple R-squared: 0.004059, Adjusted R-squared: -0.0001433
## F-statistic: 0.9659 on 1 and 237 DF, p-value: 0.3267
boxplot(aa1$tau~dd$arm_name)

summary(lm(aa1$tau~dd$arm_name))
##
## Call:
## lm(formula = aa1$tau ~ dd$arm_name)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.27779 -0.12780 -0.06359 0.04161 1.15703
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.24476 0.03152 7.764 2.52e-13 ***
## dd$arm_nameTdaP_wP 0.04415 0.04262 1.036 0.301
## dd$arm_nameTT_aP -0.04916 0.04262 -1.153 0.250
## dd$arm_nameTT_wP 0.08026 0.04361 1.840 0.067 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2295 on 235 degrees of freedom
## Multiple R-squared: 0.04435, Adjusted R-squared: 0.03215
## F-statistic: 3.635 on 3 and 235 DF, p-value: 0.01357
adjMatrix=ifelse(abs(aa1$wi[[1]])<10^(-5),0,1)
gg=graph_from_adjacency_matrix(
adjmatrix = adjMatrix,
mode = c("undirected"),
weighted = NULL,
diag = FALSE
)
edgeListHeter1=as_edgelist(gg)
write.csv(edgeListHeter1,file="edgeListHeter1.CSV")
saveRDS(edgeListHeter1,file="edgeListHeter1.rds")
two-stage model (full data,5.7min)
group=ifelse(fulldata$visit_name==2,1,2)
aa2=lglasso(data=fulldata[,-c(3:5)],lambda = c(0.01174363,0.329193),group = group,random = TRUE,trace = T)
## [1] "alpha estimate: 1"
## [1] "iteration 1 precision difference: 8.422 /correlation alpha difference: 13.448"
## [1] "alpha estimate: 14.4475327149633"
## [1] "iteration 2 precision difference: 1.78 /correlation alpha difference: 3.631"
## [1] "alpha estimate: 10.8164840594234"
## [1] "iteration 3 precision difference: 1.299 /correlation alpha difference: 4.052"
## [1] "alpha estimate: 6.76451192330618"
## [1] "iteration 4 precision difference: 0.922 /correlation alpha difference: 1.994"
## [1] "alpha estimate: 4.77076500066998"
## [1] "iteration 5 precision difference: 0.532 /correlation alpha difference: 0.912"
## [1] "alpha estimate: 3.85894187265782"
## [1] "iteration 6 precision difference: 0.244 /correlation alpha difference: 0.461"
## [1] "alpha estimate: 3.3980340059494"
## [1] "iteration 7 precision difference: 0.112 /correlation alpha difference: 0.099"
## [1] "alpha estimate: 3.29858031765356"
## [1] "iteration 8 precision difference: 0.049 /correlation alpha difference: 0.053"
aa2$wi[[1]][1:10,1:10]
## FIM_IgG4 TT_IgG3 IPV1_IgG3 ACT_FcgR2a
## FIM_IgG4 9.930509e+01 2.071051e-07 -2.606191e-07 4.459130e-07
## TT_IgG3 2.071051e-07 4.899573e+01 9.410921e-07 -1.660629e-06
## IPV1_IgG3 -2.606191e-07 9.410921e-07 1.287435e+01 1.984936e-01
## ACT_FcgR2a 4.459130e-07 -1.660629e-06 1.984936e-01 1.685178e+01
## TT_ADNP 3.022390e-07 4.282021e-07 -8.289307e-07 -1.327945e-07
## FHA_IgG 3.545154e-07 2.735582e-02 -6.173215e-07 -6.975407e-01
## PRN_FcgR2a 6.901900e-08 -2.973752e-07 -9.981627e-07 -3.759593e-01
## IPV3_ADCD -3.616374e-08 -3.496281e-07 -6.070792e-07 -1.535118e-06
## IPV1_IgG4 2.195377e-07 3.217237e-07 -2.745955e+00 -3.359303e-07
## PT_FcgR2a 1.994590e-07 -7.519280e-07 -1.528049e-06 -8.335685e-02
## TT_ADNP FHA_IgG PRN_FcgR2a IPV3_ADCD
## FIM_IgG4 3.022390e-07 3.545154e-07 6.901900e-08 -3.616374e-08
## TT_IgG3 4.282021e-07 2.735582e-02 -2.973752e-07 -3.496281e-07
## IPV1_IgG3 -8.289307e-07 -6.173215e-07 -9.981627e-07 -6.070792e-07
## ACT_FcgR2a -1.327945e-07 -6.975407e-01 -3.759593e-01 -1.535118e-06
## TT_ADNP 1.303620e+01 -2.828367e-08 -1.517031e-06 1.246659e-06
## FHA_IgG -2.828367e-08 1.462483e+01 2.806981e-01 1.371743e-02
## PRN_FcgR2a -1.517031e-06 2.806981e-01 1.061332e+01 -2.061207e-06
## IPV3_ADCD 1.246659e-06 1.371743e-02 -2.061207e-06 2.896878e+01
## IPV1_IgG4 2.948348e-07 -3.653664e-07 -1.928859e-07 -3.511775e-07
## PT_FcgR2a -1.710913e-06 1.109669e-06 -8.339525e-01 -2.286853e-06
## IPV1_IgG4 PT_FcgR2a
## FIM_IgG4 2.195377e-07 1.994590e-07
## TT_IgG3 3.217237e-07 -7.519280e-07
## IPV1_IgG3 -2.745955e+00 -1.528049e-06
## ACT_FcgR2a -3.359303e-07 -8.335685e-02
## TT_ADNP 2.948348e-07 -1.710913e-06
## FHA_IgG -3.653664e-07 1.109669e-06
## PRN_FcgR2a -1.928859e-07 -8.339525e-01
## IPV3_ADCD -3.511775e-07 -2.286853e-06
## IPV1_IgG4 3.569084e+01 1.781065e-07
## PT_FcgR2a 1.781065e-07 1.435052e+01
aa2$wi[[2]][1:10,1:10]
## FIM_IgG4 TT_IgG3 IPV1_IgG3 ACT_FcgR2a
## FIM_IgG4 6.105314e+00 6.358992e-07 -9.312490e-07 9.033971e-07
## TT_IgG3 6.358992e-07 1.235651e+01 7.774927e-07 -1.125640e-06
## IPV1_IgG3 -9.312490e-07 7.774927e-07 9.884217e+00 1.984952e-01
## ACT_FcgR2a 9.033971e-07 -1.125640e-06 1.984952e-01 1.817845e+01
## TT_ADNP 3.623571e-07 2.946126e-07 -3.554546e-07 9.040422e-07
## FHA_IgG 6.817066e-07 2.735814e-02 2.809947e-06 -6.975421e-01
## PRN_FcgR2a 8.247872e-08 2.409139e-06 1.204605e-06 -3.759606e-01
## IPV3_ADCD 8.215201e-08 1.106072e-07 2.571048e-08 1.198487e-07
## IPV1_IgG4 1.884002e-07 2.463721e-07 -2.745955e+00 1.573658e-07
## PT_FcgR2a -3.644733e-08 7.025158e-07 1.065294e-06 -8.336386e-02
## TT_ADNP FHA_IgG PRN_FcgR2a IPV3_ADCD
## FIM_IgG4 3.623571e-07 6.817066e-07 8.247872e-08 8.215201e-08
## TT_IgG3 2.946126e-07 2.735814e-02 2.409139e-06 1.106072e-07
## IPV1_IgG3 -3.554546e-07 2.809947e-06 1.204605e-06 2.571048e-08
## ACT_FcgR2a 9.040422e-07 -6.975421e-01 -3.759606e-01 1.198487e-07
## TT_ADNP 1.259663e+01 1.308294e-07 2.387840e-08 2.622623e-07
## FHA_IgG 1.308294e-07 1.391464e+01 2.806995e-01 1.372102e-02
## PRN_FcgR2a 2.387840e-08 2.806995e-01 1.175460e+01 4.760504e-07
## IPV3_ADCD 2.622623e-07 1.372102e-02 4.760504e-07 3.232732e+01
## IPV1_IgG4 2.261578e-07 1.595074e-07 3.470418e-08 -1.127671e-07
## PT_FcgR2a -1.156879e-06 -3.917391e-06 -8.339546e-01 7.282460e-07
## IPV1_IgG4 PT_FcgR2a
## FIM_IgG4 1.884002e-07 -3.644733e-08
## TT_IgG3 2.463721e-07 7.025158e-07
## IPV1_IgG3 -2.745955e+00 1.065294e-06
## ACT_FcgR2a 1.573658e-07 -8.336386e-02
## TT_ADNP 2.261578e-07 -1.156879e-06
## FHA_IgG 1.595074e-07 -3.917391e-06
## PRN_FcgR2a 3.470418e-08 -8.339546e-01
## IPV3_ADCD -1.127671e-07 7.282460e-07
## IPV1_IgG4 1.316437e+01 5.205890e-07
## PT_FcgR2a 5.205890e-07 1.562105e+01
dd=unique(fulldata[,c(1,3:5)])
boxplot(aa2$tau~dd$infant_arm)

summary(lm(aa2$tau~dd$infant_arm))
##
## Call:
## lm(formula = aa2$tau ~ dd$infant_arm)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.29737 -0.15855 -0.08399 0.07076 1.33762
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.26486 0.02542 10.42 <2e-16 ***
## dd$infant_armwP 0.08469 0.03558 2.38 0.0181 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.275 on 237 degrees of freedom
## Multiple R-squared: 0.02334, Adjusted R-squared: 0.01922
## F-statistic: 5.664 on 1 and 237 DF, p-value: 0.01811
boxplot(aa2$tau~dd$delivery_mode)

summary(lm(aa2$tau~dd$delivery_mode))
##
## Call:
## lm(formula = aa2$tau ~ dd$delivery_mode)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.27302 -0.16572 -0.09276 0.05448 1.28996
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.23117 0.07701 3.002 0.00297 **
## dd$delivery_modeVaginal Delivery 0.08135 0.07919 1.027 0.30536
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2777 on 237 degrees of freedom
## Multiple R-squared: 0.004433, Adjusted R-squared: 0.0002319
## F-statistic: 1.055 on 1 and 237 DF, p-value: 0.3054
boxplot(aa2$tau~dd$arm_name)

summary(lm(aa2$tau~dd$arm_name))
##
## Call:
## lm(formula = aa2$tau ~ dd$arm_name)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.32343 -0.15875 -0.07918 0.05850 1.36275
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.29520 0.03776 7.818 1.8e-13 ***
## dd$arm_nameTdaP_wP 0.03072 0.05106 0.602 0.548
## dd$arm_nameTT_aP -0.05548 0.05106 -1.087 0.278
## dd$arm_nameTT_wP 0.08041 0.05224 1.539 0.125
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2749 on 235 degrees of freedom
## Multiple R-squared: 0.0323, Adjusted R-squared: 0.01994
## F-statistic: 2.614 on 3 and 235 DF, p-value: 0.0519
adjMatrix1=ifelse(abs(aa2$wi[[1]])<10^(-5),0,1)
adjMatrix2=ifelse(abs(aa2$wi[[2]])<10^(-5),0,1)
gg1=graph_from_adjacency_matrix(
adjmatrix = adjMatrix1,
mode = c("undirected"),
weighted = NULL,
diag = FALSE
)
gg2=graph_from_adjacency_matrix(
adjmatrix = adjMatrix2,
mode = c("undirected"),
weighted = NULL,
diag = FALSE
)
edgeListHeter21=as_edgelist(gg1)
edgeListHeter22=as_edgelist(gg2)
edgeListHeter2=list(edgeListHeter21,edgeListHeter22)
write.csv(edgeListHeter21,file="edgeListHeter21.CSV")
write.csv(edgeListHeter22,file="edgeListHeter22.CSV")
saveRDS(edgeListHeter2,file="edgeListHeter2.rds")